题目: Geometric estimates for complex monge-ampere equations
报告人:郭 斌 博士(美国罗格斯大学纽瓦克分校)
报告时间:2019.11.1 下午2:00-3:00
报告地点:数学学院E404(沙河校区)
摘要:In the talk, we will prove uniform gradient and diameter estimates for a family of geometric complex Monge–Ampère equations. Such estimates can be applied to study geometric regularity of singular solutions of complex Monge–Ampère equations. We also prove a uniform diameter estimate for collapsing families of twisted Kähler–Einstein metrics on Kähler manifolds of nonnegative Kodaira dimensions. This is based on a joint work with Xin Fu and Jian Song.
报告人简介:郭斌,本科毕业于北京大学,硕士毕业于清华大学,博士毕业于美国罗格斯大学New Brunswick分校,现为美国罗格斯大学纽瓦克分校的助理教授。他的研究方向是几何分析和复几何,并在相关方向上发表了十多篇重要的论文,分别发表在Math. Ann., Adv. Math., CMP, Crelle, Math.Z.等国际著名数学期刊上。
邀请人:张世金