北航微分几何讨论班(2021年春第6讲)
题目:Complex structures on Einstein four-manifolds
报告人:吴 鹏 研究员(复旦大学)
报告时间:2021.4.30 9:00-10:00
腾讯会议号:570 714 666
摘要:The question that when a simply connected four-manifold with a complex structure admits a compatible Einstein metric of positive scalar curvature has been answered by Tian, LeBrun, respectively. Tian classified Kahler-Einstein four-manifolds with positive scalar curvature, LeBrun classified Hermitian, Einstein four-manifolds with positive scalar curvature. In this talk we consider the inverse problem, that is, when a simply connected four-manifold with an Einstein metric of positive scalar curvature admits a compatible complex structure. We will show that if the determinant of the self-dual Weyl curvature is positive then the manifold admits a compatible complex structure.
报告人简介:吴 鹏,现为复旦大学上海数学中心青年研究员。研究方向为微分几何,特别是关于4维爱因斯坦度量的研究。已经在Math. Ann., CVPDE, J. Geom. Anal. 等重要数学期刊上发表多篇论文。
邀请人:张世金