报告题目:Geometry of scalar curvature, isoperimetric surface and quasi-local mass
报告人:史宇光教授(北京大学)
报告时间:2019年5月22日下午4:00—5:00
报告地点:主321
报告摘要:Quasi-local masses are basic notions in General Relativity. Geometrically, a quasi-local mass can be regarded as a geometric quantity of a boundary of a 3-dimensional compact Riemannian manifold. Usually, it is in terms of area and mean curvature of the boundary. It is interesting to see that some of quasi-local masses, like Brown-York mass, Hawking mass and isoperimetric mass have deep relation with geometry of scalar curvature and classical isoperimetric inequality in asymptotically flat (hyperbolic) manifolds. In this talk, I will discuss these relations and finally give some applications in the fill-in problem of Bartnik data and the uniqueness of isoperimetric surfaces in asymptotically Ads-Schwarzschilds manifolds.
报告人简介:史宇光,现为北京大学数学科学学院副院长、教授,博士生导师。2007年获国家杰出青年基金项目资助;2010年获第十一届中国青年科技奖;2010年获由国际理论物理中心,Abel基金会,国际数学家联盟颁发的Ramanujan奖;2010-2013年主持国家基金委重大项目;2013年获教育部长江教授;2016年享受政府特殊津贴;2016年入选国家万人计划。他的研究工作包括与数量曲率有关的几何分析问题,以及共形紧流形上的几何分析问题的研究,在J. Diff. Geom., Trans. AMS等国际著名数学期刊上已经发表34篇论文。
邀请人:韩德仁