报告题目:The Limit of the Boltzmann Equation to the Euler Equations for Riemann Problems
报告人:黄飞敏 研究员
报告人单位: 中国科学院
报告时间:2019年12 月26日16:00-17:00
报告地点:沙河主楼(二期)E404
摘要:The convergence of the Boltzmann equation to the compressible Euler equations when the Knudsen number tends to zero has been a long standing open problem in the kinetic theory. In the setting of Riemann solution that contains the generic superposition of shock, rarefaction wave and contact discontinuity to the Euler equations, we succeed in justifying this limit by introducing hyperbolic waves with different solution backgrounds to capture the extra masses carried by the hyperbolic approximation of the rarefaction wave and
the diffusion approximation of contact discontinuity.
报告人简介:黄飞敏、中科院数学院华罗庚首席研究员,杰青,主要从事偏微分方程的理论研究,在双曲守恒律方程组和粘性守恒律方程组取得了一系列重要的研究成果。他已在Adv.Math, CMP, ARMA等著名数学刊物上发表学术论文90余篇,引用次数1500余次。曾获得国家自然科学奖二等奖、美国工业与应用数学学会杰出论文奖。。
邀请人:郑孝信,张世金