请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【微分几何讨论班(第8讲)】 Contracting hypersurfaces by powers of the $\sigma_k$-curvature

发布日期:2020-11-10    点击:

北航微分几何讨论班(第8讲)

 

题目:Contracting hypersurfaces by  powers of the $\sigma_k$-curvature


报告人:王险峰 (南开大学)


报告时间:2020111210:30-11:30

 


地点:沙河校区主楼EE-404


摘要:We investigate the contracting curvature flow of closed, strictly convex axially symmetric hypersurfaces in $\mathbb{R}^{n+1}$ and $\mathbb{S}^{n+1}$  by $\sigma_k^\alpha$, where $\sigma_k$ is the $k$-th elementary symmetric function of the principal curvatures and $\alpha\ge 1/k$. We prove that for any $n\geq3$ and any fixed $k$ with $1\leq k\leq n$, there exists a constant  $c(n,k)>1/k$ such that  if $\alpha$ lies in the interval $[1/k,c(n,k)]$, then we  have a nice curvature pinching estimate involving the  ratio of the biggest principal curvature to the smallest principal curvature at every point of the flow hypersurface, and we prove that the properly rescaled  hypersurfaces converge exponentially to the unit sphere. Our results  provide an evidence for the general convergence result without initial curvature pinching conditions. This is joint work with Prof. Haizhong Li and Jing Wu.


报告人简介:王险峰,南开大学hjc888老品牌黄金城,副教授。从事微分几何方向的研究,特别是子流形方面的研究。


邀请人:胡鹰翔、贺慧霞和张世金

 

快速链接

版权所有 © 2021  hjc888老品牌黄金城 - 新黄金城xhjc官方网站
地址:北京市昌平区高教园南三街9号   电话:61716719