北航微分几何讨论班(第13讲)
题目:Geometry of Maurer-Cartan Elements on Complex Manifolds
报告人:陈酌(清华大学)
报告时间:2020年12月10日10:30-11:30
地点:沙河校区E-405
题目:Geometry of Maurer-Cartan Elements on Complex Manifolds
摘要:The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie algebroid theory. In particular, we extend Lichnerowicz-Poisson cohomology and Koszul-Brylinski homology to the realm of extended Poisson manifolds; we establish a sufficient criterion for these to be finite dimensional; we describe how homology and cohomology are related through the Evens-Lu-Weinstein duality module; and we describe a duality on Koszul-Brylinski homology, which generalizes the Serre duality of Dolbeault cohomology. This is a joint work with Mathieu Stienon and Ping Xu.
报告人简介:陈酌,2004年在北京大学获博士学位,现任清华大学数学科学系副教授,研究领域属于经典微分几何与数学物理的交叉与结合。近年来在非线性李理论,特别是Atiyah示性类, Poisson群胚,李双代数胚和Courant代数胚的课题研究中,取得了一系列重要学术成果,发表在J. Differential Geometry, Comm. Math. Phys.等权威期刊上。
邀请人:沈良明