北航数学论坛学术报告
Backward stochastic differential equation method for nonlinear filtering problems
曹延昭 教授
(美国Auburn University)
报告时间:上午10:00-11:00, 2021-12-23 (星期四)
腾讯会议 ID:153 320 803
内容简介:We consider the classical filtering problem where a signal process is modeled by a stochastic differential equation and the observation is perturbed by white noise. The goal is to find the best estimation of the signal process based on the observation. Kalman Filter, Particle Filter, and Zakai filter are some well-known approaches to solve the optimal filter. In this talk, we shall show some new numerical algorithms for nonlinear filtering problems based on backward stochastic differential equations. Both theoretical results and numerical experiments will be presented.
报告人简介:曹延昭教授,1983年毕业于吉林大学数学系,1996年获弗吉尼亚理工学院数学博士学位,现任美国奥本大学数学与统计学系 Don Logan endowed chair in mathematics,应用与工业数学学会(SIAM)美国东南地区分会主席。主要从事偏微分方程和积分方程数值解法、随机偏微分方程数值解、非线性滤波、不确定性量化等领域的研究,部分研究成果发表在《SIAM J. Numer. Anal.》、《Numer. Math.》、《Math. Comp.》、《IMA J. Numer. Anal.》等计算数学顶级期刊上。现担任包括计算数学国际首要期刊《SIAM J. Numer. Anal. 》等学术期刊编委,研究课题得到美国国家自然基金会以及美国能源部的资助。
邀请人:罗雪