基础数学系学术报告
--- 分析与偏微分方程讨论班(2021秋季第 15 讲)
报告题目: The Vlasov-Poisson-Boltzmann/Landau equation with polynomial perturbation near Maxwellian
报告人: 李星毓 (巴黎九大)
时间: 2021-12-30 16:00-17:00 (周四下午)
地点: 腾讯会议ID:348-844-523,点击链接入会:
https://meeting.tencent.com/dm/fFPudXBfzfq7
摘要: We consider the Vlasov-Poisson-Boltzmann equation without angular cutoff near Maxwellian, and we prove the global existence, uniqueness, and large time behaviour for solutions in a polynomial weighted space $H^2_{x, v}( \langle v \rangle^k)$ for some constant $k >0$ large enough. In this talk, we extend former results in $H^N_{x, v}(\mu^{-1/2})$ to polynomial weighted space $H^2_{x, v}( \langle v \rangle^k)$. The proof combines works by Y. Guo and the semigroup method introduced by M.P. Gualdani, S. Mischler, and C. Mouhot. In fact, our proof can be also be used in the Landau type equation. This is a joint work with Chuqi Cao andd Dingqun Deng (Tsinghua University).
报告人简介: 李星毓, 本科毕业于中国科学技术大学,博士毕业于巴黎第九大学,研究方向为分析和PDE, 已在国际著名数学期刊发表文章多篇。
邀请人:任天一、张安
欢迎大家参加!