微分几何讨论班(2022春季第3讲)
题目: Inverse mean curvature flow for spacelike graphic hypersurfaces with boundary in Lorentz-Minkowski space
报告人: 毛 井 教授 (湖北大学)
时间:2022-3-25 10:00-11:00
腾讯会议 ID:331 4182 4978
摘要: In this talk, we introduce the evolution of spacelike graphic hypersurfaces defined over a convex piece of hyperbolic plane $\mathscr{H}^{n}(1)$, of center at origin and radius $1$, in the $(n+1)$-dimensional Lorentz-Minkowski space $\mathbb{R}^{n+1}_{1}$ along the inverse mean curvature flow with the vanishing Neumann boundary condition, and show that this flow exists for all the time. Moreover, we can also show that, after suitable rescaling, the evolving spacelike graphic hypersurfaces converge smoothly to a piece of hyperbolic plane of center at origin and prescribed radius, which actually corresponds to a constant function defined over the piece of $\mathscr{H}^{n}(1)$, as time tends to infinity. This talk is based on a joint-work with Dr. Ya Gao.
报告人简介: 毛井,2013年博士毕业于葡萄牙里斯本大学,2014年4月-2015年3月受巴西国家科技发展委员会资助在国家纯粹数学与应用数学研究所从事博士后研究工作。2018年10月-2019年9月受国家留学基金委资助在里斯本大学进行学术访问。自2013年以来,先后执教于哈尔滨工业大学、湖北大学,现为湖北大学数学与统计学学院教授。目前主要研究兴趣为流形上的谱分析、曲率流及其应用上,在《J. Math. Pures Appl.》、《Calc. Var. PDEs》、《J. Geom. Anal.》等重要国际学术期刊上发表论文近40篇。
邀请人:张世金