微分几何讨论班(2022春季第5讲)
题目:Harmonic functions with polynomial growth on manifolds with nonnegative Ricci curvature
报告人:黄显涛 副教授(中山大学)
时间:2022-4-15(周五) 10:30-11:30
腾讯会议ID:948 469 009
报告摘要: Suppose (M, g) is an n-dimensional noncompact Riemannian manifold with nonnegative Ricci curvature, and let hk(M) be the dimension of the space of harmonic functions with polynomial growth of growth order at most k. In this talk, I will first review the previous works in estimating hk(M), then I will introduce my recent results on hk(M) in the case that M has maximal volume growth and the tangent cone at infinity of M is unique.
报告人简介: 黄显涛,中山大学副教授。主要研究方向为几何分析,度量几何。曾在流形上的调和函数, 正迷向曲率流形等方面的研究取得了一系列创新性研究成果。在J. Reine Angew. Math.,Math. Ann. 等国际著名数学期刊上发表多篇论文。
邀请人:江寅