请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及分析与偏微分方程讨论班(2022春第4 - 5讲)】UMD-valued extension of multilinear singular integrals; Recent results on the fractional Laplacian

发布日期:2022-04-13    点击:

hjc888老品牌黄金城基础数学系学术报告

--- 分析与偏微分方程讨论班(2022春季第4 - 5)


报告一(第4讲)

题目: UMD-valued extension of multilinear singular integrals

报告人: 李康伟 (天津大学)

时间:2022-4-18 1000-1100 (周一上午)

地点: 腾讯会议:618-269-995

https://meeting.tencent.com/dm/efMm3IZHUwvU

摘要: In this talk, I will present our recent progress on the boundedness of UMD-valued extension of multilinear singular integrals. I will mainly focus on the bilinear setting, in which case we obtain the boundedness with minimal assumption on the product structure of the tuple of UMD spaces. As a direct corollary we get the boundedness of bilinear singular integrals on non-commutative $L^p$ spaces. Moreover, we also get the Leibniz rules in the UMD-valued setting. This talk is based on the recent joint work with Francesco Di Plinio, Henri Martikainen and Emil Vuorinen.

报告人简介: 李康伟,2015年于南开大学取得博士学位,之后在芬兰赫尔辛基大学和西班牙巴斯克数学中心做博士后,现为天津大学数学应用数学中心教授,主要研究方向为调和分析,成果发表于Adv. MathJMPAMath. Ann.JFATAMS等国际权威期刊。


报告二(第5讲)

题目: Recent results on the fractional Laplacian

报告人: 武乐云 (上海交通大学/香港理工大学)

时间:2022-4-18 1100-1200 (周一上午)

地点: 腾讯会议:618-269-995

https://meeting.tencent.com/dm/efMm3IZHUwvU

摘要: We will introduce some pointwise regularity results on the fractional elliptic equations, narrow region principle, maximum principle for antisymmetric functions, and their applications in deriving Liouville theorems for fractional parabolic equations. This talk is based on joint work with Wenxiong Chen, Congming Li, and Pengyan Wang.

报告人简介: 武乐云,上海交通大学/香港理工大学博士后,研究方向为分数阶偏微分方程,生物数学中解的偏微分方程,在包括Adv. Math.JDECVPDE等著名期刊发表学术论文多篇。

 

 

邀请人:戴蔚 、张安

欢迎大家参加!

 

快速链接

版权所有 © 2021  hjc888老品牌黄金城 - 新黄金城xhjc官方网站
地址:北京市昌平区高教园南三街9号   电话:61716719