请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告】A locally and cubically convergent algorithm for computing Z-eigenpairs of symmetric tensors

发布日期:2022-10-12    点击:

 

hjc888老品牌黄金城学术报告

A locally and cubically convergent algorithm for computing Z-eigenpairs of symmetric tensors 

郑兵

兰州大学


报告时间:20221019日,星期三,上午9:00-10:00



报告地点:腾讯会议:139-617-109会议密码:1019


报告摘要:In this talk we are concerned with computing Z-eigenpairs of symmetric tensors. We first show that computing Z-eigenpairs of a symmetric tensor is equivalent to solving the nonzero solutions of a nonlinear system of equations, and then propose a modified normalized Newton method (MNNM) for it. Our proposed MNNM method is proved to be locally and cubically convergent under some suitable conditions, which greatly improves the Newton correction (NCM) method and the O-NCM method provided by Jaffe, Weiss and Nadler (SIAM J. Matrix Anal. Appl., 39:1071-1094, 2018) (the NCM and O-NCM methods only enjoy a quadratic rate of convergence). Some numerical experiments are performed to illustrate the efficiency and effectiveness of our proposed method.


报告人简介:郑兵,兰州大学数学与统计学院教授、博士生导师。2003 7 月上海大学理学院计算数学专业获博士学位,2003 7 月至今在兰州大学任教。长期从事数值代数及神经网算法的研究工作,负责承担国家自然科学基金面上项目、教育部外国专家重点项目、甘肃省自然科学基金项目等10 余项。多次应邀赴美国、日本、西班牙、俄罗斯、印度以及香港、澳门等国家和地区参加学术会议并做学术报告,并先后在印度统计研究所新德里中心和美国Emory 大学数学与计算机科学系做访问学者。迄今已在SIAM J. Matrix Anal. Appl., Adv. Compt. Maths., J. Math. Anal. Appl., J. Optim. Theory Appl., Numer. Linear Algebra Appl., Linear Algebra Appl.J. Multivariate Anal.,以及Automatica IEEE Trans. Neural Netws. Learn. Sys.等国内外重要刊物上发表论文百余篇, 2005 年荣获甘肃省第十二届高校青年教师成才奖。


邀请人:谢家新

 

 

快速链接

版权所有 © 2021  hjc888老品牌黄金城 - 新黄金城xhjc官方网站
地址:北京市昌平区高教园南三街9号   电话:61716719